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Bianchi Type II, VIII, and IX Cosmological Models 
in Lyra's Geometry 
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The Bianchi type 1I, VIII, and IX models are investigated in Lyra's geometry (in 
normal gauge) when the gauge function /3 is time dependent. The physical 
behavior of these models in vacuum and in the presence of the Zeldovich fluid is 
discussed. 

1. INTRODUCTION 

Weyl (1918) introduced a generalization of Riemannian geometry in an 
attempt to unify gravitation and electromagnetism. Lyra (1951) proposed 
another modification of Riemannian geometry in which, in contrast to 
Weyl's geometry, the connection is metric preserving and length transfer is 
integrable as in Riemannian geometry. Lyra introduced a gauge function 
into the structureless manifold as a result of which a displacement field arises 
naturally. 

The Lyra geometry is more in keeping with the spirit of Einstein's 
principle of geometrization since both the scalar and tensor fields have more 

' or less a geometrical significance. Furthermore, the present theory predicts 
the same effects, within observational limits, as far as the classical solar 
system tests are concerned as well as the tests based on the linearized form 
of the field equations (Halford, 1972) (see also Sen, 1960; Sen and Dunn, 
1971; Sen and Vanstone, 1972). However, the energy-momentum tensor 
T "v is not conserved in Lyra's geometry. 

Several authors (Sen, 1957; Halford, 1970; Beesham, 1968a,b; Bhamra, 
1974; Kalyanshetti and Waghmode, 1982; Karade and Borikar, 1978; 
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Reddy and Innaiah, 1985, 1986; Reddy and Venkateswarlu, 1987) have stud- 
ied cosmology in Lyra's geometry with a constant displacement field, which 
plays the same role as the cosmological constant in the usual treatment. Sen 
(1957) constructed a static model with finite density similar to the static 
Einstein universe, but a significant difference was that the model exhibited 
a red shift. Halford (1970) studied Robertson-Walker models in Lyra's 
geometry. All these authors studied cosmological models in Lyra's geometry 
for a gauge function independent of time. 

In cosmological models in Lyra's geometry the constant displacement 
field plays a role analogous to the cosmological constant in general relativity. 
Soleng (1987) has pointed out that the cosmology based on Lyra's geometry 
with constant gauge vector ~ will either include a creation field and be 
identical to Hoyle's creation field cosmology (Hoyle, 1948; Hoyle and 
Narlikar, 1963) or contain a special vacuum field which together with the 
guage term may be considered as a cosmological term. In the latter case the 
solutions are identical to the general relativistic cosmologies with a cosmo- 
logical term. 

In this work we consider Bianchi type II, VIII, and IX models in the 
case when the displacement field is time-dependent. Similar results can be 
obtained in Hoyle's creation field theory (Hoyle, 1948) if the creation field 
is assumed to be time-dependent. Such investigations have not been 
undertaken in Hoyle's theory so far. Singh and Singh (1990, 1991a,b) investi- 
gated Bianchi type I, III, V, and VI0 and Kantowski-Sachs cosmological 
models in the Lyra manifold. Beesham (1988) investigated FRW cosmolog- 
ical models in the Lyra manifold with a time-dependent displacement field. 
Singh and Singh (1991c) discussed FRW models in the Lyra manifold with 
constant deceleration parameter which are relevant to the study of inflation- 
ary cosmology. 

2. FIELD EQUATIONS 

The field equations are (Sen, 1957) 

I 3 3 t t  g~, , , -  ~g~,,,R + ~ dp~,dp,,- zg~,,,dp,~dp = -  z T,,,, (2.1) 

where ~b. is a displacement field vector defined as 

~b, = (0, O, O, fl ) (2.2) 

with fl = f l ( t ) .  The other symbols have their usual meaning as in Riemannian 
geometry. We take the energy-momentum tensor T~v for the perfect fluid as 

T~v = ( p + p ) u ~ u v - p g ~ v  (2.3) 
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together with u i= [0, 0, 0, (g44)-1/2]. Here p and p are pressure and density, 
respectively. The  equat ion  o f  state for the fluid is taken as 

p = (A,-  1 )p,  1 < • < 2 (2.4)  

3. B I A N C H I  T Y P E  II M O D E L  

The Bianchi type II metric is given by 

d S  2 = d t  2 - S 2 d x  2 - R 2 d y 2  _ (R 2y2 + ! ,-2 4x, ~ y ) d z 2 - S E y E d x d z  (3.1) 

where 

S = S(t), R = R(t) 

For the metric (3.1) the field equations (2.1)-(2.4) lead to 

-- 1--//~-[-/1~2 3 S 2 3 
2 - -  -R-~ = - z p f12 (3.2) R \ g /  4 --4 

J~+S+RS+ 1 S 2 3fl2 
- - -  - _ - z = = - Z p - - :  (3.3) 

R S R S 4  R~ 4 

/~S+(/~/2 1 S 2 3fl2 
- -  ~-~=Xp+~ (3.4) 2 ~ \~)  4 

The energy conservation equation is 

3 "+I  Z ( p + p )  2 Z # + ~ f l f l  +3 fl2](~+2 ~ ) = 0  (3.5) 

An overdot denotes differentiation with respect to t. Making the transforma- 
tion of the time coordinate by 

dt = R 2S do (3.6) 

we find that equations (3.2)-(3.5) reduce to 

2 --R"R - 3 (R-~R)2-2R'S' 4 (3.2a) 

- - - 2  - 2  -+ - - -  
R RS S 4 

= - (ZP + ~f12) R4S2 (3.3a) 

2 + - - S  4= xp f12 R4S2 (3.4a) 
RS 4 4 
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and the energy conservation equation is 

xp' +32/3/~ ' + [Z(p + p) + ~ p 2 ] ( S +  2-~-) = 0 '  R' (3.5a) 

From (3.2a)-(3.4a) we have 

2 RJt--2 -S4=x(p-p)R4S2 (3.7) 
R 

... (R.?+s.. (s.? -~-  \--~) -y-  \-~ / = z( p-p)R's2 (3.8) 

Primes denote differentiation with respect to 1/. 
Finally, we have only three equations (3.4a), (3.7), and (3.8) in five 

unknowns, R, S, 9, P, and p. 
It is difficult to solve the field equations in general, and therefore we 

consider some physically interesting cases. 

Case I. Empty Universive (p = p = 0) 

In this case equations (3.4a), (3.7), (3.8), and (3.5a) reduce to 

R" _ 1 $4 = 0 (3.9) 
R 2 

~ - ~ /  =0 (3.10) 

:R's'+(R'12-~s'- - 3 . ' s  2 (311) 
RS \ R /  4 4 

3 ~ P  + ~  (3.12) 

From (3.9) and (3.10), we get 

S'--- ( ~ )  2 + 1 s 4 = 0  S 2 (3.13) 
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Solving equations (3.9), (3.10), and (3.13), we obtain 

S 2= c3 sech(c3 r/+ c4) 

R S = e  c'"+~ (3.14) 

R 2= (I/C3) cosh(c3r/+ c4) e 2(c'r1+c2) 

Here c~, c2, C3, C4 are arbitrary constants. 
Using (3.14) in (3.11), we get 

3 -1'/2 e-2(c'"+~2) 
#(t)= (4c, -d)j [cosh(c3Y]_l_c4)]I/2 (3.15) 

Using (3.14) and (3.15) in (3.12), we see that the energy conservation 
equation is identically satisfied. 

The gauge function [3(0 is real or imaginary according as: 

(i) c3>0, 21cd>lc3l or (ii) c3>0, 21cd<lc31 
and 

(i) c3<0, 2lcj]<lc31 or (ii) c3<0, 21cd>lc3l 

Physical Behavior o f  the Model 

From equation (3.15), we see that 
e -  2(cl n + c2) 

fl(t) oc [cosh(c3r/+ c4)] I/2 (3.16) 

The Ricci scalar is 

R = 2 c 3  - c l  2 c o s h ( c a r / +  c4) (3.17) 

The dynamical parameters are as follows (Raychaudhuri, 1955). 
The shear: 

=1-2 ~ i  g22/ \ ~ - ~ 3 3 3 !  \g33 g , , / J  
+ �89 (g' 'g22~,~2 + g' 1g33~123 -'b g22g33~3) 

 3,8> 
3 \R  S /  

0" 2 =2C3 e_4(c, rT+c9 sech(c3r/+ c4) 
3 

• [cl + c3 tanh(c3r/+ c4)] 2 
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Scalar of expansion: 

= S + 2 R = 3  I)" 0 =u ;k 
S R V 

0=[2c, +2tanh(c3rl+c4)] 

Hubble parameter: 

Deceleration parameter: 

q= 1).2 

V 3 

3c~sech2(carl+c4) 2cl+ tanh(c3rl+c4 ) q = - I  - ~  

Rotation tensor: 
1 

(O~v = ~[g/~4,v --gv4,~] = 0 

0 -2 - -  2C3 e_4<c, n+ c2) seth(c3 q + C4) 

0 3 

[cl + e3 tanh(c3q + c4)] 2 
• 

I 
2Cl + 5c3 tanh(c3~7 + c4) 

Spatial volume: 

(3.19) 

(3.20) 

(3.21) 

V 3 =~/ -~  oc SR 2 (3.22) 

Case II. Zeldovich Fluid p = p 

In this case equations (3.4a), (3.5a), (3.7), and (3.8) reduce to 

(R ' I  2 - !  $ 4 = 0  (3.23) R" 

R \ R /  2 

R"-(R'I2+S"-(S'I2=O (3.24) 
R \ R /  S kS /  

+ _ $ 4 =  Xp + f12 R4S2 (3.25) 
2 RS 4 
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The energy conservation equation is 

, 3 , 3 2 S '  ' 
X P + ~ f l f l  +(2XP+~ fl ) ( -~+ 2 R )  =0 (3.26) 

From (3.23) and (3.24), we get 

S" (S'/2+ 1  s'=0 (3.27) 

Solving equations (3.23), (3.24), and (3.27), we get 

S 2 = c3 sech(c3r/+ Ca) 
RS= eC,,+c2 

R2 =1__ cosh (c3 r  / -t- C4) e 2(c'0 +c2) 
c3 

(3.28) 

Using (3.28) in (3.25), we get 

3 [2 e-4(cm+c2) 
_ )cosh(c3.+c,) (3.29) 

Here fl remains an arbitrary function of t. 
Using (3.28) and (3.29) in (3.26), we find that the energy conservation 

equation is identically satisfied. 

Physical Behavior of  the Model 

The Ricci scalar is 

[cl :~ e -4(<'0+~:) 
R=  2c3 ~ -  c,) cosh(c3r/+ c,) 

The dynamical parameters are as follows (Ellis. 1971). 
Shear tensor: 

, I . . ; , j ( u k  k)  
a o  = ~ ( u i j +  u j ; i )  + ~ ( u ~ u j  + u j u .  - 

where 

(rE= �89 ty V6 0, ho.= gV - uiu j 

(3.30) 
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Shear: 

3 \R S] 

0 2 = 2c3 e_4(c,, + c~) sech(c3 r/+ c4) [c~ + c3 tanh(c3 r/+ c4)] 2 
3 

Scalar of  expansion: 

0 = Uk~ 

o=(S+ 2 R--1= 2cl +~  tanh(c3ri + c4) 
kS R/ 2 

Rotation tensor: 

l I �9 . 
coo= ~ ( u i j -  uj;i) - ~(uiuj- ujui) 

Rotation- 

Here cou= 0. 
Hubble parameter: 

Deceleration parameter: 

v ~  
q =  I72 

( 0 2 =  _1 . . . . . .  U 

# = � 8 9  

q=-l-3-c2sech2(c3rl+c4) 2cl+ tanh(c3r/+c4) 
2 

0-2 - -  2C3 e_4(c,~+c2 ) sech(c3r/+ c4) x 
0 3 

[CI + C 3 tanh(c3r/+ c4)] 2 
I 

2cl + ~c3 tanh(c3r/+ c4) 

The relative anisotropy: 

0 -2 _ 2c3 e_4(cm +c2) sech(c3q + c4) [c~ + c3 tanh(c3r/+ c4)] 2 
p 3 

x[_~_~Xff+c3{2 c]~ e -4'~'0+~) l - '  
7 k c ' - ~ ]  c o s h ( c 3 .  + c , ) J  

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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4. BIANCHI TYPE VIII MODEL 

The Bianchi type VIII metric is given by 

dS 2 = dt 2_ $2 dx 2 _ R 2 @2 _ (R 2 sinh 2 y + S 2 cosh 2 y) dz 2 

- 2 S  2 coshy dx dz (4.1) 

where 

R = R(t), S= S(t) 

The field equations (2.1)-(2.4) for the metric (4.1) lead to 

2~+(_R)2 1 3 S  2 3 2 
R \R]  R2 4 R 4 = - Z p - ~ f l  (4.2) 

: :  s 2 3 

R S RS  4 R - - ~ = - X P - 4  p2 (4.3) 

2 J~S_I_ (RR')2 1 I S  2 + 3 f l 2  (4.4) 
RS  R 2 4 R  4=Zp 4 

The energy conservation equation is 

Z j O + ~ O f l + [ y , ( p + p ) + ~ f l 2 ] ( ~ + 2 ~ ) = O  (4.5, 

Here the dot denotes differentiation with respect to t. 
Using the transformation (3.6), we find that equations (4.2)-(4.5) 

reduce to 

R" _ 2  R ' S ' _ R 2 S 2  3 S 2 
- - - 3  - -  - -  

2 R RS 4 R  4 

= - (XP + 3fl2) R4S2 (4.2a) 

= - (XP + 3fl2) R4Sz (4.3a) 

, '  (__~)2 2 2 1 4 / 4 \ 4 3 )  2 R S +  - R  S - - r S  = [ X p + - f l  2 R4S 2 (4.4a) 
RS  

;gp, 2pO, + X(p+p)  + B2 S' ' -~+2 =0 (4.5a) 

Here primes denote differentiation with respect to I/. 
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From (4.2a)-(4.4a) we obtain 

2 R"-2(R'I2-2R2S2-S4=x(p-p)R4SZ (4.6) 
g \ R ]  

R" (R')2+S"_(S')2_R2S2=z(o_p)R4S2 (4.7) 
R \R,I S kS} 

It is difficult to find a general solution and therefore we consider some 
particular cases. 

Case I. Empty Universe (p -- p -- 0) 

In this case equations (4.4a), (4.6), and (4.7) reduce to 

R"R (R~R) 2-R2S2=1S42 

R -S- -  k-S-/ - R 2 S 2 = 0  

R'S' 
+ (R') 2 - , , 2 s 2 - !  s '  = e21es ' 2 RS \R/  4 

The energy conservation equation is 

- ' + 2  = 0  2tiff 2 f12 

From (4.8) and (4.9), we get 

Solving equations (4.8), (4.9), and (4.12), we easily obtain 

S 2 = c3 sech(c3r/+ c4) 

RS= cl cosech(cl 7/+ c2) 

R2 = c~ cosech2(cl 1/+ c2) 

c3 sech(c3r/+ c4) 

Here c~, c2, c3, c4 are arbitrarily constants. 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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Using (4.13) in (4.10), we get 

[ e3 (4c21_c2)] '/2 [sech(c3rl+ c4)] I/2 
fl(t) = ~ cosech2(el q + e2) 

(4.14) 

Using (4.13) and (4.14) in (4.11), we see that the energy conservation 
equation is identically satisfied. 

The gauge function fl(t) is real or imaginary according as: 

and 
(i) c3>0, 2hl>[c3l or (ii) c3>0, 21cd<1c31 

(i) c3<0, 21cd<1c31 or (ii) c3<0, 21ed>lc31 

The Physical Behavior of the Model 

The Ricci scalar is 

R=2e_]34[c2 2'~ sech(c3r/+ c4) 
c, ~-c , )cosech4(c ,q  + c2 ) 

The dynamical parameters are as follows. 
Shear scalar: 

O.2= 2C3 sech(c3rl + c4) 

3cJ cosech4(cl 1/+ c2) 

• [c3 tanh(c3r/+ c4) - cl coth(cl 7/+ c2)] 2 

Scalar of  expansion: 

0 = c3 tanh(car/+ c4) - 2c~ coth(Cl r/+ c2) 
2 

Hubble parameter: 

1 H=gO 

Deceleration parameter: 

q=  p2 

,~ 2e~ cosech2(cl q + c2) + �89 sech2(e3q + c4) 

q= - 1 -  ~ ~c3 ~ c4) - 2c---~l coth(ci-------~ + c2--) 

(4.15) 

(4.16) 
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The rotation tensor: 

to#=0 

0 "2_ 2c3 sech(c3r/+ C4) 
0 3c 4 cosech4(cl r/+ c2) 

• [c3 tanh(c3r/+ c4) - c, coth(c, I/+ c2)] 2 

�89 tanh(c3 r/+ c4) - 2c~ coth(cl I/+ c2) 

Case II. Zeldovich Fluid (p  = p) 

In this case equations (4.4a), (4.6), and (4.7) reduce to 

R"R (R~R) 2-R2S2--1S42 

"" s" (s'l  . 2 : 0  ~ - ~  ~ ,  - g - ~ ,  - = 

2R'S'+(R']2-R2S:'-Is4=(Zp+3 fl2) \R/ 4 \ 4 

and the energy conservation equation is 

, , 

From (4.18) and (4.19), we get 

S" . ,.2 1 

Solving equations (4.18), (4.19), and (4.22), we obtain 

S 2 = c3 sech(c3~7 + c4) 

RS= Cl cosech(c, 1/+ c2) 

R2 = c~ cosech2(Cl 1/+ c2) 
c3 sech(c3q + C4) 

Using (4.23) in (4.20), we get 

3 n2, c3 [~ c]~ sech(c3rl+C4) p= p=- - -  p -r---~ cT--- ~ - - -  
4Z Zc, ~ 4 )  cosech (clr/+c2) 

Here 13 remains an arbitrary function of t. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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Using (4.23) and (4.24) in (4.21), we see that the energy conservation 
equation is identically satisfied. 

Physical Behavior of the Model 
The Ricci scalar is 

(_~ ) sech(c3q+c4) R = 2c--2 - c~ 
c 4 cosech4(cl 7/+ c2) 

The dynamical parameters are as follows. 
Shear scalar: 

o-2= 2c3 sech(caq + c4) 
3c 4 cosech4(C117 + cz) 
• [Ca tanh(c3r/+ c4) - cl coth(c~ 1/+ c2)] 2 

Scalar of expansion: 

O=I2tanh(c3rl+c4)-2cl coth(clrl+c2)] 

Hubble parameter:  

Deceleration parameter:  

q = - l - 3  

Rotat ion tensor: 

tou=0 

o -2 2c3 

0 

H=�89 

2c 2 cosech2(c117 + c2) + i 2 ~c3 sech2(c3r/+ c4) 

�89 tanh(c3r/+ c4) - 2c~ coth(cl q + C2) 

sech(c3 q + c4) 
3c~ cosech4(cl 1/+ c2) 

[c3 tanh(c3r/+ c4) - cl coth(cl q + c2)] 2 • 
�89 tanh(c3q + c4) - 2c~ coth(c, q + c2) 

(4.25) 

(4.26) 

(4.27) 
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The relative anisotropy: 

0 -2 _ 2c3 sech(c3r/+ c4) 

p 3c 4 cosech4(cl/7 + c2) 

• [Ca tanh(c3 r/+ c4) - cl coth(cl r/+ c2)] 2 

t 2 -1 3 f12, c3 {2  c3~ sech(c3q+c4) ] 
c~Z~ 4 )  cosech4(c, r /+ c2)J " 

(4.28) 

5. BIANCHI TYPE IX M O D E L  

The Bianchi type IX metric is given by 

d S 2 = d t 2 - S  2 d x 2 - R  2 d y 2 - ( R  2 sinZ y +  S 2 cos2 y) dz 2 

+ 2S 2 cos y dx dz 

where 

(5.1) 

R = R(t), S = S(t) 

The field equations (2.1)-(2.4) for the metric (5.1) lead to 

2--+R \ R /  R 2 4R4=-ZP-~I32 (5.2) 

s 2 3 
= -  z p -  p2 (5.3) 

R S R S 4  4 

�9 . �9 2 1 1 S 2 3 f12 2 RS--}-(RI Jr R2 R4--.~-Zpql--~ (5.4) 
RS  \ R /  4 

The energy conservation equation is 

Here the dot denotes differentiation with respect to t. 
Using the transformation (3.6), we find that equations (5.2)-(5.5) 

reduce to 

2 - - - 3  2 . . . . . . . .  
R R S  4 

=-(Zp+] f12)R482 (5.2a) 
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R" (RR)2_2R'S'+S" (S ' /2+  1 $4 
- - - 2  R RS -~-  \-s 

= - (ZP + ~f12) R4S2 (5.3a) 

.'s'+(.'~+ .2s21 2 RS \--~j --~S'I=~Zp+~fl2jR4S 2 (5.4a) 

+3 3 
ZP' 2flfl'+[Z(P+P)+~fl2](S~s+2 R-~R) =0 (5.5a) 

From (5.2a)-(5.4a) we easily obtain 

2 - - -  +2R2S2-S4=z(p-p)R4S2 (5.6) 
R 

R \ R /  -S--\--S,/ +R2S2=Z(p-p)R4S2 (5.7) 

Here a prime denotes differentiation with respect to r/. 
It is difficult to find a general solution, so we consider some particular 

cases. 

Case I. Empty Universe (p -- p - 0) 

In this case equations (5.4a), (5.6), and (5.7) reduce to 

R" (~)2 1S 4 + R 2 S 2 = -  
R 2 

- - -  + + R 2 S 2 = 0  

_..}.- q_ R 2 S 2 _ I  s4._~ t~2.R4S 2 
RS 4 

and the conservation equation is 

~ fl fl ' + 3 fl 2 ( S~s + 2 R--~R ) = 

(5.8) 

(5.9) 

(5.1o) 

(5.11) 
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From (5.8) and (5.9), we get 

S" S '  2+1 

Solving equations (5.8), (5.9), and (5.12), we get 

S 2 = c3 sech(c3q + c4) 

RS = cl sech(cl r/+ c2) 
(5.13) 

R2 = c~ sech2(cj q + c2) 
C3 sec h (c3 r /+  c4) 

Using (5.13) in (5.10), we get 

fl(t) = (4c~- e~)J [sech(c3q + c4)] I/2 (5.14) 
sech2(c~ rl + c2) 

Using (5.13) and (5.14) in (5.11), we find that  the energy conservation 
equation is identically satisfied. 

The Physical Behavior of the Model 

The Ricci scalar is 

2 (c~ 2'~ sech(c3r/+ c,) 
R = ~  c3~-4-c,) sech4(c, r /+ c2) 

The dynamical parameters are as follows. 
Shear scalar: 

0 2_ 2c3 sech(c3q + c4) 
3c~ sech4(Cl 1/+ c2) 

x [c3 tanh(c3 q + c4) - cl tanh(cj r/+ c2)] 2 

Scalar of expansion: 

0 =c-c2 tanh(c3r/+ c4) - 2c~ tanh(c111 + c2) 
2 

Hubble parameter:  

/-/= kO 

Deceleration parameter:  
! 2 ~C3 sech2(c3r/+ c4) - 2c~ sech2(cl q + c2) 

q = - l - 3  
~c3 tanh(c : l  + c4) - 2cl tanh(c~ r/+ c2) 

(5.15) 

(5.16) 
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Rotation tensor: 

Eoo=0 

0 -2_ 2c3 sech(c:! + c4) 

0 3c~ sech4(c117 + C2) 

[C3 tanh(c3r/+ c4) - Cl tanh(c~ 7/+ c2)] 2 
X I 

~ca tanh(c3r/+ c4) - 2c~ tanh(cj 17 + c2) 

Case II. Zeldovich Fluid (p = p) 

In this case equations (5.4a), (5.6), and (5.7) reduce to 

/ ?2  l 

and the conservation equation is 

From (5.18) and (5.19), we get 

S" (S'h2+l  s'=0 
Solving equations (5.18), (5.19), and (5.22), we easily obtain 

S 2 = c3 sech(c3q + c4) 

RS = cj sech(cl q + c2) 

R2_ c~ sech2(el 7/+ c2) 

c3 sech(c3q + c4) 

Using (5.23) in (5.20), we get 

P=P=--~Z ZcJ \ sech4(Cl r/+ c2) 

Here fl remains an arbitrary function of t. 
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(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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Using (5.23) and (5.24) in (5.21), we find that the energy conservarion 
equation is identically satisfied. 

The Physical Behavior of the Model 

The Ricci scalar is 

2c3( c2 2'~ sech(c3r/+ c4) 
R=--~I \-~-c,] Sech4(Cl/. / + c2) 

The dynamical parameters are as follows. 
Shear scalar: 

0" 2 _ 2C3 sech(c3r/+ C4) 

3c 4 sech4(cl 7/+ c2) 

x [Ca tanh(c3r/+ C4) - -  C 1 tanh(cl 7/+ c2)] 

Scalar of expansion: 

0 = c3 tanh(car/+ c4)  - 2Cl tanh(cl 7 / +  c2) 
2 

Hubble parameter: 

1 H=30 

Deceleration parameter: 

�89 2 sech2(c3r/+ C4) - -  2c~ sech2(c, I/+ c2) 
q = - l - 3 ~  

~c3 tanh(c3r/+ c4) - 2c~ tanh(c~ 1/+ c2) 

Rotation tensor: 

r 

0 -2 _ 2C3 sech(car/+ C4) 

0 2c 4 sech4(cl r/+ C 2 )  

[c3 tanh(c3r/+ c4) - Cl tanh(cl 7/+ c2)] 2 
x 

�89 tanh(c31/+ c4) - 2c, tanh(c~ 7/+ c2) 

( 5 . 2 5 )  

(5.26) 

( 5 . 2 7 )  
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The relative anisotropy: 

0 "2 2C3 sech(c3q + c4) 

p 3c 4 sech4(clT/+C2) 

x [c3 tanh(c3o + c4) - c~ tanh(cl I/+ c2)] 2 

F 3 ,~2--C3 [ 2 C~ sech(c3rl+c4)] -I 
x / - - - - p  t----~/cl . . . .  

[_ 4Z XCl \ sech4(ClO + c2)J 
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(5.28) 

A P P E N D I X  

The general metric for Bianchi type II, VIII ,  and IX models is 

dS2=dt2_ S 2 dx2_ R 2 @2_ ( R2f 2 + S2h 2) dz2 + 2S2h dx dz 

where 

R=R(t), S=S(t), h=h(y), f = f ( y )  

17Yl ]c~ l +il 
f ( y ) =  h(y) ~2 , = - ~y for 5 = _ 

Isinh y[ -cosh  y 

The proper spatial volume is V3=vr~=SR2f(y) .  
The field equations (2.1)-(2.4) for the metric (A.1) are 

R \ R J - - - ~  4 fZR 4 h f / 2 f 2 g  4 
3 2 =-zp-aP 

k S I~S l h2S 2 _ + - + - - + -  . _ _  
R S RS 4f2R 4 

= - z p -  ~ 0 2 

i~+~+,~+1 h~S ~ S2h ~ ( h~2+h~f 4 
-R S R--S 4 f2R 4 2 f - -~  \ - - h  --~-/ 

= - z p  - ~ P ~  

(t~t: 1~S 1 (f2211h~S2 
\ 1 ~  +2RS R : \ f /  4 f : R "  

IX 

II 

VIII  

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

= % p +  ~f12 (A.6) 
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h s 

+ -  2 
2-R 5 h f  

S2h2h 2 / ) 1 h22h2S___...__ 2 f_. 2 ~1 1 f 2 h  = 0  
2 f 2R4  2 f h - 2  

(A.7) 

An overdot denotes differentiation with respect to t, and h2, f22, etc., stand 
for derivatives with respect to y. 

The energy conservation equation is 

The Ricci scalar is 

k 2 

R ~ - ~ - - i  \ ~ j  ,~ f - - ~ j  (A.9) 

The expansion (0)  and shear (o -2) scalars are 

0 : ( ~ + 2 ~ )  and o '2=2(/~ ~]2 
3 \ R -  S,] (A.10) 
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